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Abstract— This paper proposes FABG (Facial Affective Be-
havior Generation), an end-to-end imitation learning system
for human-robot interaction, designed to generate natural
and fluid facial affective behaviors. In interaction, effectively
obtaining high-quality demonstrations remains a challenge.
In this work, we develop an immersive virtual reality (VR)
demonstration system that allows operators to perceive stereo-
scopic environments. This system ensures that ”the operator’s
visual perception matches the robot’s sensory input” and ”the
operator’s actions directly determine the robot’s behaviors”
- as if the operator replaces the robot in human interaction
engagements. We propose a prediction-driven latency compen-
sation strategy to reduce robotic reaction delays and enhance
interaction fluency. FABG naturally acquires human interactive
behaviors and subconscious motions driven by intuition, elimi-
nating manual behavior scripting. We deploy FABG on a real-
world 25 degree-of-freedom (DoF) humanoid robot, validating
its effectiveness through four fundamental interaction tasks:
affective interaction, dynamic tracking, foveated attention, and
gesture recognition, supported by data collection and policy
training.

I. INTRODUCTION

Humanoid robots have been increasingly deployed in
human-centric scenarios, including critical domains such as
educational assistance, behavioral guidance, and emotional
companionship [6], [1]. Research shows that nonverbal be-
haviors - particularly postural adjustments, gestural dynam-
ics, and facial microexpressions - play an essential role in
the transmission of internal states during human interactions
[14], [27]. Within this context, imitation learning (IL), as
a prominent reinforcement learning paradigm, demonstrates
significant advantages by enabling robots to acquire skills
through expert behavior emulation [36]. Existing studies have
validated the effectiveness of IL in robotics, where robots
achieve task execution ranging from simple manipulations
to multi-step complex operations via human demonstration
observation [11], [24], [28], [34]. These capabilities establish
IL as a promising approach for driving autonomous affective
interactions in humanoid robots. However, this presents two
core challenges: how to efficiently acquire high-quality facial
expression and motion demonstration data, and how to design
imitation learning strategies suitable for facial expression
interaction scenarios.
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Fig. 1: Human-to-robot behavior transfer. Top: VR captures
facial landmarks/head pose (operator) and stereo RGB-D
(ego-view). Bottom: We use the action chunking transformer
to train an imitation policy for each task.

Current mainstream demonstration data acquisition meth-
ods are based on robotic teleoperation systems. Although
existing studies have adopted interactive tools such as
VR/AR controllers [3], [15], [9], 3D spatial mice [7], [37],
smartphones [17], and haptic devices [29], [20], these solu-
tions universally exhibit practical limitations: high-precision
equipment incurs substantial costs, control interfaces demon-
strate notable latency, and user interaction logic lacks intu-
itiveness. Regarding teleoperation perception, some systems
directly utilize the operator’s eyes to observe the robot’s
task space, resulting in the operator’s view being frequently
occluded by the robot’s body, thereby hindering real-time
evaluation of action execution outcomes.

As a crucial paradigm for robotic skill acquisition, imi-
tation learning methods have achieved remarkable progress
in operational task learning [13], [2], [33]. The recently
proposed Action Chunking with Transformers (ACT) [35]
enhances the performance of complex manipulation tasks
through a task decomposition mechanism that segments long-
horizon tasks into manageable temporal chunk sequences,
significantly improving learning efficiency and execution
coherence. However, ACT exhibits two critical limitations:
(i) the original model relies solely on RGB inputs without
leveraging depth information, and (ii) its Temporal Ensemble
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suffers from historical error accumulation in real-time inter-
action scenarios while disabling Temporal Ensemble leads to
action discretization and execution stuttering.

To address these challenges, we propose FABG - an end-
to-end system for embodied affective interaction - as shown
in Figure 1, with three key technical breakthroughs: First, an
immersive VR teleoperation system. By designing a dual-
modality data acquisition architecture that integrates ZED
stereo cameras into VR devices, we synchronously capture
the robot’s first-person visual streams with the operator’s
facial landmarks/head pose data, enabling efficient acquisi-
tion of high-quality human demonstrations. Second, a depth-
enhanced observation representation. We extend ACT’s RGB
input to RGB-D multimodal input, where the depth channel
enhances spatial comprehension of human body language
through dynamic distance awareness. Third, a prediction-
driven latency compensation strategy that achieves triple
optimization via prospective prediction: mitigating historical
error propagation, eliminating mechanical jitter from discrete
actions, and compensating multi-source system delays.

Our principal contributions are as follows:

1) We introduce a novel affective interaction system for
expressive robots, enabling the direct transfer of human
facial interaction capabilities to robots, significantly
enhancing motion naturalness and authenticity in HRI.

2) Within this system, we deliver three technical innova-
tions: an Immersive VR Demonstration System, Depth-
Augmented Observations, and a Prediction-Driven La-
tency Compensation strategy.

3) We validate and conduct ablation studies of FABG on
a physical humanoid robotic platform.

II. RELATED WORK

A. Demonstration Platform

The core of imitation learning lies in extracting effec-
tive policies from expert demonstrations. While Behavior
Cloning (BC)-based teleoperation methods [22] have gained
attention for their direct policy transferability, teleoperating
physical robots for data collection presents significant chal-
lenges. At the perceptual level, existing systems predomi-
nantly adopt operator-first-person perspectives [10], [32] or
third-person viewpoints [16], [23], [30] for environmental
observation. Such approaches are prone to perceptual de-
viations due to visual occlusions, leading to missing visual
features in policy learning. Open-TeleVision [5] innovatively
eliminates occlusions via an immersive 3D active visual
feedback system, yet its stereoscopic vision transmission
suffers network latency, and the tightly-coupled motion con-
trol mechanisms may induce operator motion sickness. Fur-
thermore, these systems’ strong reliance on physical robots
substantially limits demonstration scenario flexibility. UMI
[8] mounts GoPro cameras on handheld grippers, eliminat-
ing physical robot dependencies and providing a portable
interface for robot teaching in natural environments, which
inspires our system.

B. Imitation Learning for Robotic Manipulation

As a key technique in imitation learning, BC effectively
accomplishes tasks by replicating user demonstrations [21].
However, BC suffers from compound error accumulation
[25], [4], where the propagation of temporal prediction
deviations causes policies to drift from training distribu-
tions, leading to irrecoverable states [26], [31]. To address
this, DAgger [26] and its variants [12], [18] mitigate error
propagation by enabling additional policy interactions and
expert correction mechanisms, while their requirement for
continuous human intervention significantly increases user
burden. ACT improves long-horizon manipulation task effi-
ciency through temporal task decomposition, yet its chun-
ked execution mode tends to create action discontinuities.
Furthermore, employing temporal ensemble mechanisms in
real-time interaction scenarios induces execution stalls due
to the Temporal Ensemble of historical errors. We propose
predicting action sequences at each timestep, dynamically
selecting optimal execution frames via preset latency offsets
to generate precise yet smooth motion trajectories, while
compensating multi-source system delays for rapid response.

III. METHOD

FABG enables the direct transfer of human demonstrations
in natural environments to deployable robotic policies. Our
system overview is illustrated in Figure 1, designed with
three core objectives:

Portability and Efficiency: The Immersive VR-based
Demonstration System can be deployed in any environment
and initiates data collection with near-zero setup time.

Effectiveness: Collected data must encapsulate sufficient
information to capture natural and complex human micro-
expressions and subconscious motions. Imitation learning
policies should enable robots to effectively acquire demon-
strated behaviors, achieving fluid human-robot interaction
while eliminating mechanical artifacts.

Reproducibility: Researchers and enthusiasts should be
capable of deploying and utilizing FABG across diverse
humanoid robotic platform.

The following sections detail how we realize these objec-
tives through hardware, software, and policy design.

A. Immersive VR Demonstration System

Employing appropriate system for effective demonstration
collection is critical to obtaining high-quality results. In this
work, we present a virtual reality-based immersive system for
collecting human user demonstrations. As shown in Fig. 1,
human demonstrators utilize PICO 4 Pro VR headsets and
ZED RGB-D cameras to perform interactive behaviors in-
stead of physical robots. Compared to using two independent
biomimetic cameras in robotic eyes, ZED RGB-D cameras
provide stable and precise depth information. The VR system
records the operator’s 58 ARKit facial expression coefficients
and head RPY (Roll, Pitch, Yaw) rotational movements in
real-time, while the RGB-D camera synchronously captures
480×640 resolution first-person-view imagery. To equip oper-
ators with active first-person perception capabilities and align



human-robot viewpoints, we developed a 3D environmen-
tal perception module in Unity, implementing stereoscopic
passthrough functionality that enables operators to observe
3D environments consistent with the real world. As depicted
in Figure 2, we calibrated the position and scaling of ZED
camera feeds within the VR interface to achieve seamless
stitching between 3D passthrough views and ZED camera
fields of view. Spatial markers were then applied to the ZED
video streams before disabling their display, thereby guiding
operators into the correct visual zones.

Fig. 2: Alignment between PICO passthrough view and ZED
camera feed for establishing observation space positioning in
stereoscopic environments.

B. Depth-Augmented Observations

To address spatial localization challenges in affective
interaction scenarios, our solution improves upon existing
methods that rely on binocular RGB images for indirect
3D geometry inference by synchronously processing multi-
modal sensory data. The system integrates dual 480×640×3
RGB streams and single-channel depth maps captured by
stereo cameras at the input stage. The preprocessing stage
implements a multi-stage strategy: Gaussian filtering with the
following kernel is applied to depth maps for high-frequency
noise suppression:

Dσ(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(1)

Here, Dσ(x, y) denotes the Gaussian filter kernel where
σ controls blur intensity. Convolving this kernel with depth
maps smooths fine details and removes noise. The feature
extraction module employs a dual-path architecture: the RGB
path extracts 384-dimensional semantic features via a pre-
trained DinoV2 visual backbone, forming an 18× 24 spatial
feature tensor, while the depth path processes data through
multi-layer CNNs to generate 128-dimensional geometric
features with identical spatial resolution. Channel-wise con-
catenation constructs a 512× 18× 24 fused feature matrix.
This design preserves depth data’s spatial representational
strengths while integrating RGB’s semantic comprehension,
establishing a multimodal feature space for 3D interaction
intent understanding. Experiments demonstrate this architec-
ture effectively synergizes geometric structures and appear-
ance semantics, providing a robust 3D perceptual foundation
for natural human-robot interaction.

C. Prediction-Driven Latency Compensation

ACT generates precise and smooth motions through action
chunking and temporal ensemble. However, this approach
exhibits significant limitations in real-time interaction. When

using action chunking alone, the robot generates a sequence
of k frames at time t and executes them until time t+k. This
discrete decision-making mechanism results in trajectory
discontinuities at the junctions of adjacent action sequences,
leading to periodic motion stuttering. The temporal ensemble
avoids this issue by querying the policy at each time step.
However, because it accumulates historical predictions, it in-
herently introduces response delays to immediate commands,
potentially leading to error accumulation and amplification
in dynamic environments due to noise interference. More-
over, multiple inherent system delays, such as the operator’s
perception-action latency during data acquisition, computa-
tional delays in inference, and communication delays, further
exacerbate response lag, ultimately impairing the real-time
interaction experience between humans and robots.

Fig. 3: Our approach employs Action Chunking with PDLC,
replacing conventional interleaved observation-execution cy-
cles.

To address these issues, this study proposes Prediction-
Driven Latency Compensation (PDLC). Our approach
queries the policy at each time step to prevent periodic
motion stuttering. Additionally, we design a dynamic trun-
cation mechanism based on predefined time offsets. By
quantitatively analyzing system delays, we determine the
optimal action offset to achieve effective end-to-end latency
compensation. Specifically, we fix the length of an action
sequence to k, with n representing the optimal action off-
set. At each time step, the robot receives an observation,
generates an action sequence of length k, and executes
the (n + 1)-th action from the sequence, as illustrated in
Figure 3. This process incurs no additional training cost or
inference time. Experimental results demonstrate that PDLC
is crucial for improving real-time human-robot interaction,
as it significantly reduces response latency and generates
precise and smooth interactive motions.

IV. EXPERIMENT

A. Hardware Platform

We validate human-robot interaction behaviors using a
self-designed bioinspired robotic head platform that simu-
lates human-like facial expressions and head motions through
a rigid-flexible hybrid structure and a multi-DoF actuation
system. The core architecture comprises a 3D-modeled rigid
framework integrated with elastic bioinspired skin. By con-
verting expression parameters into 25-channel PWM sig-
nals to drive actuators, we achieve independent/coordinated
control of key facial regions including eyelids, eyebrows,



Fig. 4: Human-Robot Interaction Scenarios in FABG

TABLE I: Task Completion Times.

Input Modality Execution Policy Affective Interaction Dynamic Tracking Foveated Attention Gesture Recognition

Smile Surprise Face Hand

RGB w/o TE — — 47.35 45.54 69.68 88.37
RGB w/ TE 54.39 74.43 58.12 54.72 56.03 109.54
RGB PDLC(ours) 10.54 12.03 14.61 10.75 17.71 18.17

RGB-D(ours) w/o TE — — 43.58 39.56 41.42 79.05
RGB-D(ours) w/ TE 45.62 53.60 54.39 52.28 43.84 98.94
RGB-D(ours) PDLC(ours) 6.94 7.55 10.49 6.77 11.44 14.23

Results are averaged over five experimental trials. Time in seconds; ’—’ denotes task failure.

cheeks, and mouth. This platform establishes a controllable
experimental interface for affective computing and behav-
ioral mirroring research through engineering mapping of
biomechanical characteristics.

B. Experimental Setup

To validate the integrated performance of our method in
real-time responsiveness, accuracy, and affective expressive-
ness, we design four representative human-robot interaction
tasks to demonstrate the efficacy of the proposed data acqui-
sition system and policy improvements, as shown in Figure 4.
The experimental configurations are as follows:

Affective Interaction Task: Requires real-time facial
expression recognition and congruent response generation.
The robot must reciprocate smiles with smiles and surprise
expressions with corresponding reactions. When testers ex-
hibit subtle variations in the intensity of expression, the
robot synchronously adjusts its responses while maintaining
mirroring during static expressions. The testers present 10
smiling expressions and 10 surprised expressions.

Dynamic Tracking Task: Evaluates head-eye coordina-
tion performance. The robot continuously tracks the tester’s
face until hand extension triggers gaze redirection to the

hand. After the hand exits the robot’s field-of-view (FoV),
tracking reverts to facial focus. Each tester completes 10
trials for facial tracking and 10 for hand tracking.

Foveated Attention Task: Tests dynamic visual pursuit
capabilities. The testers perform finger approach-retraction
motions, during which the robot adaptively adjusts the in-
terpupillary distance (IPD) to maintain gaze focus during
proximity and resets IPD upon retraction. This task requires
precise distance sensitivity for continuous finger tracking via
dynamic IPD adaptation. Ten trials are conducted.

Gesture Recognition Task: Assesses dynamic command
parsing. The testers maintain hand positions while randomly
cycling through five gestures (up/down/left/right/fist). The
robot must accurately recognize gestures to reorient toward
specified directions or fixate on fists. 20 trials (4 per gesture)
are executed.

For all four real-world tasks, we collect demonstrations via
the immersive VR demonstration system. Task complexity
dictates 2-5 second execution durations per trial by human
operators, with randomized inter-trial intervals. We record 50
demonstrations per task, yielding total data set durations of
4-6 minutes.
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Fig. 5: Comparative output curves of the JawOpen parameter generated by three strategies (PDLC, w/ TE, w/o TE) versus
human demonstrations under identical model conditions.

C. Experimental Results

The input modalities cover both RGB and RGB-D con-
figurations, while the execution strategies encompass three
approaches: without temporal ensemble (w/o TE), temporal
ensemble (w/ TE), and PDLC, resulting in six comparative
experimental groups. All models are built upon the DinoV2
[19] visual backbone and trained under unified computa-
tional conditions (NVIDIA RTX 4070Ti GPU) with identical
hyperparameters: initial learning rate 5 × 10−5, batch size
20, and 20,000 optimization iterations. To eliminate com-
putational bias, all experiments execute inference at 30Hz.
Validation is conducted on the facial robot platform described
in Section IV-A, ensuring environmental consistency.

For all tasks, we evaluate mean task completion times
across successful trials. To standardize timing, testers initiate
subsequent interactions immediately after robot responses.

According to Table I’s five-trial averaged results, our
proposed PDLC strategy with RGB-D input demonstrates
superior performance. In affective interaction tasks, models
without inference strategies fail due to state instability, while
RGB-D+PDLC achieves 6.94s (smile) and 7.55s (surprise)
response times, showing 84.8 % and 85.9% improvements
over RGB-D+TE. Depth sensing enhances micro-expression
capture, reducing surprise response time by 37.2% com-
pared to RGB+PDLC. For dynamic tracking, PDLC’s mo-
tion trajectory prediction improves continuity, with RGB-
D+PDLC completing hand tracking in 6.77s (37.0% faster
than RGB+PDLC), confirming depth-enhanced 3D spatial
localization. In foveated attention tasks, RGB-D+PDLC ad-
justs inter-pupillary distance in 11.44s (35.4% reduction vs.
RGB+PDLC), benefiting from depth-based precise distance
perception. Gesture recognition tasks show RGB-D+PDLC
resolving commands in 14.23s (85.6% faster than TE), at-
tributed to PDLC’s temporal noise suppression. TE strategies
increase average task durations by 21-25% due to historical
interference, whereas PDLC reduces average time by 82.6%
via dynamic compensation. Multi-group comparisons con-
firm that RGB-D and PDLC synergistically excel in spatial-
sensitive tasks, providing robust solutions for real-time HRI
systems.

D. Ablation experiment

To validate the effectiveness of PDLC in achieving low-
latency response and high motion accuracy, this study de-
signed a facial expression imitation experiment. Participants

wearing motion capture devices executed standardized ac-
tion sequences including sustained mouth-opening and rapid
open-close motions, while their facial movements and the
robot’s response trajectories were synchronously recorded.
Within the FABG system, a model with RGB-D input
modality was employed to comparatively evaluate three
configurations: the strategy without temporal reasoning (w/o
TE), the temporal ensemble strategy (w/ TE), and the PDLC
strategy.

The experimental results are shown in Figure 5. The
scheme without temporal reasoning suffers from action con-
tinuity loss due to discretized data processing. Although the
robot can complete a single mouth-opening action within
0.55 seconds under this scheme, it exhibits a prolonged
response time of 0.83 seconds and experiences action jitter
due to an inability to sustain motion consistency. Temporal
ensemble avoids action jitter by integrating historical infor-
mation, but accumulating historical data leads to sluggish
motion execution: while initiating responses within 0.38
seconds, it requires 0.86 seconds to complete the full mouth-
opening process. In contrast, the PDLC strategy, through
real-time optimization based on dynamic predictive compen-
sation, maintains a low response latency of 0.116 seconds
while compressing the full mouth-opening process to 0.05
seconds. Furthermore, the Dynamic Time Warping (DTW)
distance between PDLC-generated motion sequences and
human demonstrations is 8.82, representing reductions of
61.6% and 79.9% compared to the strategy without temporal
ensemble (w/o TE: 22.95) and temporal ensemble strategy
(w/ TE: 44.01), respectively. These metrics conclusively
validate the PDLC strategy’s superior performance in motion
generation precision.

V. CONCLUSIONS

This study has successfully developed and validated FABG
— an end-to-end embodied affective human-robot interaction
system for real-world social scenarios. Addressing the limita-
tions of conventional imitation learning strategies in affective
interaction tasks, we propose an immersive VR-based nat-
ural teleoperation system that achieves high-quality human
demonstration acquisition through streamlined user work-
flow design. The integration of depth-enhanced multimodal
input mechanisms strengthens 3D spatial semantic parsing
capabilities, complemented by a prediction-driven latency
compensation strategy to optimize action temporal coordina-
tion. Multi-task interaction experiments on physical robotic



platforms confirm system efficacy, with FABG demonstrating
significant improvements in interaction accuracy and motion
fluidity compared to ACT. Potential future work involves
expanding FABG’s multimodal integration, such as incorpo-
rating large language models (LLMs) for human-robot verbal
interaction. This research provides technical foundations for
humanoid robot applications in dynamic social contexts.
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